The addition of an amylopectin/chromium complex to branched-chain amino acids enhances muscle protein synthesis in rat skeletal muscle | Journal of the International Society of Sports Nutrition

The athletic gut microbiota | Journal of the International Society of Sports Nutrition
Spread the love

  • 1.

    Philp A, Hargreaves M, Baar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab. 2012;302:E1343–51.

  • nutrition on the reg”/>2.

    McGlory C, van Vliet S, Stokes T, Mittendorfer B, Phillips SM. The impact of exercise and nutrition on the regulation of skeletal muscle mass. J Physiol. 2019;597(5):1251–8.

  • 3.

    Ivy JL, Ding Z, Hwang H, Cialdella-Kam LC, Morrison PJ. Post exercise carbohydrate-protein supplementation: phosphorylation of muscle proteins involved in glycogen synthesis and protein translation. Amino Acids. 2008;35(1):89–97.

  • 4.

    Wang W, Ding Z, Solares GJ, Choi SM, Wang B, Yoon A, Farrar RP, Ivy JL. Co-ingestion of carbohydrate and whey protein increases fasted rates of muscle protein synthesis immediately after resistance exercise in rats. PLoS One. 2017;12(3):e0173809.

  • 5.

    Boutry C, El-Kadi SW, Suryawan A, Wheatley SM, Orellana RA, Kimball SR, et al. Leucine pulses enhance skeletal muscle protein synthesis during continuous feeding in neonatal pigs. Am J Physiol Endocrinol Metab. 2013;305:E620–31.

  • 6.

    Falavigna G, Alves de Araújo J Jr, Rogero MM, Pires IS, Pedrosa RG, Martins E Jr, Alves de Castro I, Tirapegui J. Effects of diets supplemented with branched-chain amino acids on the performance and fatigue mechanisms of rats submitted to prolonged physical exercise. Nutrients. 2012;4(11):1767–80.

  • 7.

    Yoshida T, Kakizawa S, Totsuka Y, Sugimoto M, Miura S, Kumagai H. Effect of endurance training and branched-chain amino acids on the signaling for muscle protein synthesis in CKD model rats fed a low-protein diet. Am J Physiol Renal Physiol. 2017;313(3):F805–14.

  • 8.

    Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr. 2004;134(6 Suppl):1583S–7S.

  • 9.

    Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. Transl Gastroenterol Hepatol. 2018;30(3):47.

  • 10.

    Biolo G, Fleming RY, Maggi SP, Wolfe RR. Transmembrane transport and intracellular kinetics of amino acids in human skeletal muscle. Am J Physiol Endocrinol Metab. 1995;268(1 Pt 1):E75–84.

  • 11.

    Gonçalves NG, Cavaletti SH, Pasqualucci CA, Arruda Martins M, Lin CJ. Fructose ingestion impairs expression of genes involved in skeletal muscle’s adaptive response to aerobic exercise. Genes Nutr. 2017;12:33.

  • 12.

    Muñoz VR, Gaspar RC, Kuga GK, da Rocha AL, Crisol BM, Botezelli JD, Baptista IL, Mekary RA, da Silva ASR, Cintra DE, de Moura LP, Ropelle ER, Pauli JR. Exercise increases rho-kinase activity and insulin signaling in skeletal muscle. J Cell Physiol. 2018;233(6):4791–800.

  • 13.

    Churchward-Venne TA, Burd NA, Mitchell CJ, et al. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol. 2012;590:2751–65.

  • 14.

    Kanda A, Nakayama K, Sanbongi C, Nagata M, Ikegami S, Itoh H. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise. Nutrients. 2016;8(6):339.

  • 15.

    Borsheim E, Cree MG, Tipton KD, Elliott TA, Aarsland A, Wolfe RR. Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J Appl Physiol. 2004;96(2):674–8.

  • 16.

    Wolfe RR. Effects of insulin on muscle tissue. Curr Opin Clin Nutr MetabCare. 2000;3:67–71.

  • 17.

    Ziegenfuss TN, Lopez HL, Kedia A, Habowski SM, Sandrock JE, Raub B, Kerksick CM, Ferrando AA. Effects of an amylopectin and chromium complex on the anabolic response to a suboptimal dose of whey protein. JISSN. 2017;14:6.

  • 18.

    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280:4294–314.

  • 19.

    Kimball SR, Shantz LM, Horetsky RL, Jefferson LS. Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem. 1999;274(17):11647–52.

  • 20.

    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.

  • 21.

    Norton LE, Wilson GJ, Layman DK, Moulton CJ, Garlick PJ. Leucine content of dietary proteins is a determinant of postprandial skeletal muscle protein synthesis in adult rats. Nutr Metabol. 2012;9:67.

  • 22.

    Wang H, Kruszewski A, Brautigan DL. Cellular chromium enhances activation of insulin receptor kinase. Biochemistry. 2005;44:8167–75.

  • 23.

    Cefalu WT, Wang ZQ, Zhang XH, et al. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J Nutr. 2002;132:1107–14.

  • 24.

    Sahin K, Tuzcu M, Orhan C, Sahin N, Kucuk O, Ozercan IH, Juturu V, Komorowski JR. Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. Br J Nutr. 2013;110(2):197–205.

  • 25.

    Chen G, Gao Z, Chu W, Cao Z, Li C, Zhao H. Effects of chromium Picolinate on fat deposition, activity and genetic expression of lipid metabolism-related enzymes in 21 day old Ross broilers. Asian-Australas J Anim Sci. 2018;31(4):569–75.

  • 26.

    Regmi PR, Matte JJ, Van Kempen TATG, Zijlstra RT. (2010). Starch chemistry affects kinetics of glucose absorption and insulin response in swine. Livest Sci. 2010;134(1):44–6.

  • 27.

    Bark T, McNurlan M, Lang C, Garlick PJ. Increased protein synthesis after acute IGF-I or insulin infusion is localized to muscle in mice. Am J Phys. 1998;275:E118–E23.

  • 28.

    Takach E, O’Shea T, Liu H. 2014. High-throughput quantitation of amino acids in rat and mouse biological matrices using stable isotope labeling and UPLC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;1(964):180–90.

  • 29.

    Sahin K, Pala R, Tuzcu M, Ozdemir O, Orhan C, Sahin N, Juturu V. Curcumin prevents muscle damage by regulating NF-κB and Nrf2 pathways and improves performance: an in vivo model. J Inflamm Res. 2016;9:147–54.

  • 30.

    Anthony JC, Anthony TG, Kimball SR, Vary TC, Jefferson LS. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J Nutr. 2000;130:139–45.

  • 31.

    Anthony TG, McDaniel BJ, Knoll P, Bunpo P, Paul GL, McNurlan MA. Feeding meals containing soy or whey protein after exercise stimulates protein synthesis and translation initiation in the skeletal muscle of male rats. Nutr. 2007;137(2):357–62.

  • 32.

    Rennie MJ, Bohé J, Smith K, Wackerhage H, Greenhaff P. Branched-chain amino acids as fuels and anabolic signals in human muscle. J Nutr. 2006;136(1 Suppl):264S–8S.

  • 33.

    Komorowski J, Perez Ojalvo S, Sahin N, Tastan H, Sahin K. The effect of the addition of an amylopectin/chromium complex to increasing doses of whey protein on muscle protein synthesis in rats. JISSN. 2017;14(Suppl 2):P44.

  • 34.

    Wolfe RR. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? JISSN. 2017;14:30.

  • 35.

    Jackman SR, Witard OC, Philp A, Wallis GA, Baar K, Tipton KD. Branched-chain amino acid ingestion stimulates muscle Myofibrillar protein synthesis following resistance exercise in humans. Front Physiol. 2017;8:390.

  • 36.

    Bouitbir J, Sanvee GM, Panajatovic MV, Singh F, Gingras AC KS, Gygi SP. Mechanisms of statin-associated skeletal muscle-associated symptoms. Pharmacol Res. 2019;154:104201.

  • 37.

    Ogasawara R, Jensen TE, Goodman CA, Hornberger TA. Resistance exercise-induced hypertrophy: a potential role for Rapamycin-insensitive mTOR. Exerc Sport Sci Rev. 2019.

  • 38.

    Kim D, Sarbassov D, Ali S, King J, Latek R, Erdjument-Bromage H, Tempst P, Sabatini D. mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery. Cell. 2002;110:163–75.

  • 39.

    Morrison PJ, Hara D, Ding Z, Ivy JL. Adding protein to a carbohydrate supplement provided after endurance exercise enhances 4E-BP1 and RPS6 signaling in skeletal muscle. J Appl Physiol. 2008;104(4):1029–36.

  • 40.

    Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, et al. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab. 2008;294(2):E392–400.

  • 41.

    Proud C. Role of mTOR signaling in the control of translation initiation and elongation by nutrients. Curr Top Microbiol Immunol. 2004;279:215–44.

  • 42.

    Smith G, Yoshino J, Stromsdorfer KL, Klein SJ, Magkos F, Reeds DN, Klein S, Mittendorfer B. Protein ingestion induces muscle insulin resistance independent of Leucine-mediated mTOR activation. Diabetes. 2015;64(5):1555–63.

  • 43.

    Dong F, Hua Y, Zhao P, Ren J, Du M, Sreejayan N. Chromium supplement inhibits skeletal muscle atrophy in hindlimb-suspended mice. J Nutr Biochem. 2009;20(12):992–9.

  • 44.

    Sahin K, Onderci M, Tuzcu M, Ustundag B, Cikim G, Ozercan IH, Sriramoju V, Juturu V, Komorowski JR. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metabol Clin Exp. 2007;56:1233–40.

  • 45.

    Orhan C, Sahin N, Tuzcu Z, Komorowski JR, Sahin K. Combined oral supplementation of chromium picolinate, docosahexaenoic acid, and boron enhances neuroprotection in rats fed a high-fat diet. Turk J Med Sci. 2017;47(5):1616–25.

  • 46.

    Sahin N, Hayirli A, Orhan C, Tuzcu M, Akdemir F, Komorowski JR, Sahin K. Effects of the supplemental chromium form on performance and oxidative stress in broilers exposed to heat stress. Poult Sci. 2017;96(12):4317–24.

  • 47.

    Yoon M. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients. 2016;8(7):405.

  • 48.

    Ji LL, Miller RH, Nagle FJ, Lardy HA, Stratman FW. Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids. Metabolism. 1987;36:748–52.

  • 49.

    Kalyani RR, Egan JM. Diabetes and altered glucose metabolism with aging. Endocrinol Metab Clin N Am. 2013;42(2):333–47.

  • 50.

    Kaats GR, Blum K, Pullin D, Keith SC, Wood R. A randomized, double-masked, placebo-controlled study of the effects of chromium picolinate supplementation on body composition: a replication and extension of a previous study. Curr Ther Res. 1998;59:379–88.

  • Source link