You probably know that high blood pressure is the most common preventable risk factor for cardiovascular disease.
One of the most common causes is sodium, chlorine, and potassium dysregulation.
High blood pressure increases the risk of:
- Coronary heart disease.
- Heart failure.
- Cerebrovascular accident
- Myocardial infarction.
- Atrial fibrillation and peripheral artery disease.
- Chronic kidney disease (CKD).
- Cognitive impairment
For all these consequences and their derivatives, hypertension is the main contributor to mortality and disability worldwide.
In this article, you will discover the relationship between hypertension and sodium, chlorine, and potassium. Also, you’ll learn how to regulate these three elements to improve your health from tomorrow.
Key Takeaways
- Manage your high blood pressure through a balanced diet and regular exercise.
- Incorporate potassium-rich foods, such as bananas and leafy greens, to help lower blood pressure.
- Reduce sodium intake to maintain healthy blood pressure levels.
- Consume foods high in magnesium, like nuts and seeds, to promote heart health.
- Implement the DASH (Dietary Approaches to Stop Hypertension) eating plan for effective blood pressure management.
- Avoid excessive alcohol consumption, as it can raise blood pressure.
- Stay hydrated by drinking plenty of water throughout the day.
- Control stress levels through relaxation techniques like deep breathing and yoga.
- Consult a healthcare professional for personalized advice on managing high blood pressure.
What is hypertension?
Systemic arterial hypertension is characterized by persistently high blood pressure (BP) in the systemic arteries.
BP is commonly expressed as the relationship between:
Systolic BP is the blood pressure on the arterial walls when the heart contracts. Diastolic BP is the pressure of the heart in a rested state.
The relationship between BP and increased risk of Cardiovascular Disease (CVD) is gradual and continuous. That is to say:
If you raise your pressure beyond its average value (115/75 mmHg), the risk of CVD will increase.
The evolutionary approach and its relation to today
Hypertension is an excellent example of how vital the evolutionary process is. This shows that we need to reconcile with the past to look to the future.
In pre-industrial societies, BP levels had narrow distributions with mean values that changed little with age and averaged around 115/75 mmHg. This probably represents normal (or ideal) blood pressure for humans.
However, there is a direct correlation between high systolic BP levels and age in most modern societies. This means that as you age, it is more likely that you will have higher BP levels.
This universal finding could be explained by the fact that age increases the probability of exposure to the many dietary and environmental factors that increase BP.
The importance of chlorine, sodium, and potassium
If you remember the chemistry classes, you will know that salt is composed of two elements, sodium, and chlorine. Two of the three fundamental aspects to control hypertension. It just lacks potassium. Remember this information, which will be helpful later.
These three minerals are all friends, but each plays a unique role in friendship.
Chlorine follows sodium wherever it goes and never departs from it. Chlorine follows sodium wherever it goes and never moves away from it. Sodium and potassium always chase each other.
As the picture shows, potassium leaks out when sodium enters the cell. When sodium takes the bus back to the outside of the cell, potassium takes the same bus back to the inside.
It will soon see that it keeps sodium (and the chloride that always follows it) primarily out of cells and potassium within cells.
Because as you will see, there can be no adequate hydration without considering these three elements.
Salt, chlorine, and potassium are hydrating.
Sodium (Na +), potassium (K +), and Chloride (Cl-) ions are highly soluble in water and are called electrolytes.
Electrolytes are essential because they help balance the amount of water in your body. Electrolytes are minerals in your blood, urine, tissues, and other body fluids.
Regarding hydration, it is essential to know that water has an infinite admiration for chlorine, potassium, and sodium. As a result, multitudes of water molecules surround these magnificent three wherever they go. Since they attract water, they are hydrating.
As we saw, potassium is found inside cells, so potassium mainly hydrates the inside cells. Salt (sodium + chlorine) is located outside the cells, primarily hydrating the “extracellular fluid” that includes the blood.
The water you drink has to travel from your intestines into your blood before it can enter your cells. As a result, potassium cannot hydrate cells on its own. Potassium uses water to hydrate your cells.
This is why drinking a glass of water with a pinch of salt (about 1/16 teaspoon) and a little potassium-rich lemon juice (about 1⁄2 lemon) is much more hydrating than drinking a plain water.
Raw foods contain a lot of water, so as long as you choose potassium-rich natural foods. Adding a little salt, the fares are likely to be very hydrating.
What is the relationship between salt, potassium, blood pressure, and bloating?
The water will enter your blood and other extracellular fluids if you overeat salt and insufficient potassium. Still, your cells could become dehydrated because there is insufficient potassium to absorb the water.
Potassium is also necessary to remove excess salt by introducing it into the urine. Without it, salt builds up in the blood, causing the blood’s water content to increase.
As the water content of the blood increases, it puts more pressure on the walls of the blood vessels, causing high blood pressure.
Also, extracellular fluid from the face, hands, legs, or any body part can build up and cause swelling.
High blood pressure itself will force salt out of your urine. This will help bring your blood pressure back to normal.
However, it requires a period of continued high blood pressure, which increases the risk of cardiovascular diseases such as heart attacks and strokes.
Adequate potassium intake helps flush salt out of your system without increasing blood pressure and without an increased risk of cardiovascular disease.
You must maintain the balance between salt and potassium to keep your blood pressure stable and avoid bloating.
Keeping salt is simple because our body asks for it through hunger and cravings, but not with potassium, as we will see now.
Why do we crave salt but not potassium?
Let’s start our discussion on how much salt and potassium we need by telling you a fun fact:
Humans have five tastes: sweet, salty, sour, bitter, and umami (tasty).
Although potassium can activate sweet, salty, and bitter flavors depending on its concentration in food, we have a particular taste for salt and no specific taste for potassium.
Our salty taste not only contributes to the enjoyment of food. It allows us to crave salt when our body needs it or avoid it when we have consumed enough.
But potassium is also an essential nutrient!
Why not crave it too?
This is easier to understand if we look back at the diets of ancient prehistoric humans.
Researchers studying ancient hunter-gatherers’ diets have suggested that our distant ancestors consumed about 700 milligrams per day (mg / d) of sodium, mainly from meat, and 11 grams per day (g / d, or 11,000 mg / d)—of potassium, mostly from plants.
In contrast, modern humans eat an average of 2.3 to 6.9 g / d of sodium and 3.2 g / d of potassium.
As discussed in the previous section, sodium is necessary to remove additional potassium, and potassium to remove extra sodium.
Since our ancestors consumed much more potassium than we do but much less sodium, they always ran low on the amount of sodium they needed to handle their potassium load.
The craving for salt drove them to seek saltier foods, salt deposits, or ocean water that could be used to produce salt.
The 700 mg / d sodium figure I mentioned earlier includes sodium naturally present in meat and vegetables but does not include any salt that our ancestors added to their diets. They most likely consumed more salt than this because their cravings would have led them to seek it out.
Mineral deposits known as ‘salt licks’ are found in nature. Many wild animals, such as elk, elephants, tapirs, marmots, fox squirrels, mountain goats, and porcupines, have been observed to seek out and lick for more salt and other minerals.
Farmers also provide artificial salt licks for sheep and cattle.
Herbivores, animals that only eat plants, are more likely to use salt than carnivores because their potassium intake is higher, resulting in their sodium needs.
Salt: an ancient currency
Human cultures can also observe this association between the preference for salt and plant foods. Some ancient economies used salt as payment instead of precious metals. Salus, the Latin word for health, and the root of the Spanish word health are derived from the Latin word sal.
These examples of cultural reverence for salt come from societies where plant foods were an essential part of the diet.
In contrast, plant foods are very limited in the Arctic, and potassium intake is much lower. The explorer Vilhjalmur Stefansson studied the Inuit, natives of the Arctic, and wrote My Life with the Eskimo, who hated salt.
They probably ingested a lot of salt naturally present in shellfish but relatively little potassium, so their tastes would lead them to avoid adding additional salt to their food.
Humans are prone to salt
As humans have become more and more productive, we have made it easier to eat salt. A craving that used to force us to work for our salt now subsides much more quickly by simply scooping it from the center of the table and putting as much as we want in our food.
Meanwhile, we have also excelled at producing high-calorie, low-potassium plant foods. Grains are less potassium than root vegetables like potatoes, legumes (beans, lentils, and peas), fruits, and vegetables. As we become more productive, we increase the number of grains in our diet at the expense of these other foods. In the last century, we began to refine grains to make our bread whiter, and fluffier and give it longer shelf life. Refined flours carry a removal most of the potassium.
Our ancestors got more potassium than they needed simply by consuming available plants for calories and other nutrients. They required a craving for salt to push them to work for more salt when their bodies needed it.
Now the tables have turned. We have high-calorie, low-potassium foods at our fingertips, and we don’t have cravings to push us for potassium. We crave salt but no longer need to work to get it. Instead, it’s in our food, sometimes even protected from our taste buds, and there’s a shaker waiting for us to add more.
In short, your physiology expects that we have more accessible potassium than sodium. That is why we continue to desire salt despite the ease with which we obtain salt.
Is the ratio of salt and potassium essential to avoid hypertension?
Yes, there are several reasons to believe that the ratio of salt to potassium is more important than the absolute amount of either of them or at least that balancing them is of great importance because:
Potassium eliminates the increase in blood pressure caused by salt.
Potassium eliminates urinary calcium loss caused by salt, which
It probably means that balancing the two is essential for bone health.
As we have already discussed, they often work together in the body and need each other to eliminate each other’s excesses.
This does not necessarily mean that we need an exact ratio. I suspect that we need some potassium threshold to tolerate a specific range of sodium and vice versa.
At the very least, we should see the balance between them as fundamental to understanding how much we need from each other.
How to balance salt and potassium?
The American Academy of Medicine recommends about 2,300 mg / d for adult women, 3,400 mg / d for adult men for potassium, and 1,500 – 2,300 mg of sodium per day.
These sodium recommendations only apply to people who do not sweat a lot due to temperature or high-intensity activity and do not consider the need to balance sodium and potassium.
Based on the physiological needs, the official recommendations consider the minimum goal, but an optimal range would be around 4700-11,000 mg / d for both sexes.
If you get the right amount of potassium, you can salt your food as much as you want without hurting your health. If you consume potassium near the minimum goal, you may need to reduce your sodium intake by 1,500-2,300 mg / d if you feel that a higher salt intake raises your blood pressure.
To obtain adequate levels of potassium, we must keep in mind several essential principles:
Fruits tend to contain:
- 100 to 500 mg of potassium per 100 g of food, and
Vegetables generally provide:
- 200 to 1000 mg of potassium per 100 g of food.
However, when looked at by calories, these foods become exceptional for potassium. For example, 300 calories from spinach provide more than 7 grams of potassium.
Fat is deficient in potassium but high in calories
Fresh meats are an excellent potassium source, but they lose a lot when juices are lost during cooking. If you depend on meat for potassium, consuming the meat’s juices as part of a sauce or stew is vital.
Beware of salt in processed foods.
One of the main problems that lead us to high salt consumption is that sometimes it can be hidden from our tastes. So we consume large quantities without overlooking our natural flavors.
Salt sits on the surface in foods where you add salt to make the food salty, such as French fries. This way, we can taste it more easily.
However, salt penetrates the food in bread products and processed meats and adheres to proteins or sticks to jelly-like grids. This usually hides it from our taste buds. If processed food manufacturers want the food to be salty, they must add a lot of extra salt.
As a general rule, limit all processed foods (including fermented foods, bread, cheese, and hot dogs, as well as cold cuts, fast food, packaged snacks, and desserts) to 20% of the diet (you can use weight or volume given that is an approximate measurement) and add salt to all your meals, never add more salt than is necessary to make it taste good.
If you still need a saltier taste after that, do not hesitate to add extra fermented foods or cheese.
Conclusions on arterial hypertension, color, sodium, and potassium.
Hypertension is the number 1 risk factor in multiple pathologies.
One of the leading causes of its appearance is the dysregulation between sodium and potassium.
Historically, we have been much more comfortable obtaining high potassium levels than sodium. That is why we prefer salt and not potassium.
Currently, the opposite occurs, and we tend to have potassium deficiencies that increase the probability of suffering from hypertension.
Signs that you need more potassium include high blood pressure, water retention and bloating, bone loss, kidney stones, fatigue, muscle weakness and cramps, bloating, constipation, and abdominal pain.
Low sodium intake causes:
- low blood pressure, including orthostatic hypotension (which makes you feel dizzy when standing up),
- fatigue, weakness, dizziness, diarrhea, poor mental function,
- poor digestion, low absorption of nutrients, and
- extreme cases of headaches, nausea, vomiting, muscle cramps, disorientation, and fainting.
High sodium intake causes:
- headaches,
- high blood pressure,
- water retention, and
- bloating.
Keeping potassium in the 4700–11,000 mg/dd range will allow you to consume as much salt as possible.
Ways to get the right amount of potassium
- I prefer eating a lot of fruits and vegetables.
- Eat plenty of starchy legumes and tubers like potatoes while limiting fat and grains and strictly avoiding refined grains and sugars.
- Try eating plenty of lean protein foods while limiting fat and consuming all the juices from sauces and stews.
Since it is difficult to get enough salt from most natural foods, if you are not eating processed foods (including fermented foods, cheese, and hot dogs), you must salt your foods to get enough.
Latest Science Based Data
- A research group at Lund University has studied how a molecular sensor located in the blood vessel wall controls how the vessel compensates for high blood pressure. As we age, the sensor deteriorates1. This research was last updated on October 12, 20231.
- Women with sleeping difficulties may be at greater risk of high blood pressure. Researchers recommend people suffering from insomnia symptoms undergo screening for hypertension2. This study was published on October 11, 20232.
- The National Heart, Lung, and Blood Institute (NHLBI) leads and supports research and programs on high blood pressure. The NHLBI has funded several studies and programs to help develop new treatments for high blood pressure, many of which focus on women’s health, lifestyle interventions, and health disparities3.
- Research on a new drug called Baxdrostat has shown that it can substantially reduce blood pressure in people with treatment-resistant hypertension. The results of the phase 2 trial support the idea that some cases of treatment-resistant hypertension may be caused by the hormone aldosterone4.
While these findings are recent, medical research is ongoing, and our understanding of high blood pressure continues to evolve.
Conclusion
In conclusion, high blood pressure is a serious health condition that requires our attention. With the right lifestyle changes and proper nutrition, we can take control of our blood pressure and improve our overall well-being. Remember, laughter is the best medicine, so let’s keep our blood pressure in check and have a good chuckle along the way!
Don’t wait, start making small changes today to lead a healthier life. Embrace the power of moderation, exercise, and a balanced diet to keep high blood pressure at bay. Together, let’s raise our glasses (of water) and toast to a healthier heart! 🥂
If you’re ready to take charge of your health and say goodbye to high blood pressure, why not start with one small change today? Swap that bag of chips for a handful of nuts, or take a brisk walk around the block. Remember, every little step counts towards a healthier you! Share your favorite blood pressure-lowering tip in the comments below and inspire others to join this journey towards better heart health. Let’s show high blood pressure who’s boss! 💪
Alex is a fitness aficionado, empowers others towards healthier, active lives through small, sustainable changes for lasting results. Visit Gearuptofit.com for insightful tips and resources to enrich a balanced lifestyle.